ECONOMICS OF SOCIAL PROTECTION

Pierre Pestieau

CREPP, Université de Liège, CORE, Université catholique de Louvain, PSE and CEPR

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Outline of the lectures

INTRODUCTION

- A. Design and sustainability
- B. Performance of social protection
- C. Social protection and private insurance
- D. Tagging, transfers in kind and workfare

- 小田 ト - 日 ト - 日 ト

- 0.1 Objectives
- 0.2 Size and structure across countries

- 0.3 Taxonomy
- 0.4 Poverty and inequality

- ▲ 🗇 🕨 - ▲ 🖻 🕨 - ▲ 🖻 🕨

0.1. Objectives

• Protection against lifetime risks

- Unemployment
- Disability
- Sickness
- Early/late death
 - Retirement
 - Family
- Poverty alleviation
 - Relative versus absolute poverty
 - Temporary versus persistent poverty

< ロト (同) (三) (三)

Welfare state and social protection

(P. Pestieau)

5 / 73

0.2. Size and structure

Expenditure on Social Protection in the European Union, 2007

6 / 73

0.2. Size and structure

Country	Health	Old age	Family/housing	Labour market	Others	Total
Austria	30.0	51.6	11.6	4.9	1.9	100
Belgium	35.6	41.5	8.5	12.9	1.5	100
Denmark	37.4	28.5	15.2	15.3	3.6	100
Finland	36.9	35.8	13.4	11.8	2.1	100
France	32.8	42.7	12.9	10.2	1.4	100
Germany	37.7	44.1	7.7	8.6	1.9	100
Greece	28.9	55.7	10.6	2.3	2.5	100
Ireland	45.8	25.2	15.4	10.2	3.5	100
Italy	34.5	56.8	4.1	4.4	0.1	100
Luxembourg	40.0	38.8	17.1	3.1	1.0	100
Netherlands	44.9	32.4	6.9	12.9	2.9	100
Portugal	41.8	44.4	5.5	7.1	1.2	100
Spain	39.4	45.3	3.5	11.0	0.8	100
Sweden	43.6	34.0	12.3	8.0	2.2	100
United Kingdom	39.5	39.9	16.9	2.9	0.9	100
United States	49.7	41.4	2.6	3.1	3.2	100

Social protection benefit by function, 2003

Real growth of social spending by functions at the EC level (1980=100)

0.2. Size and structure

Sources of Funding for Social Protection, 2003

(a) Provisional Value.

Source: Eurostat, Luxembourg 2009, Online Database, http://epp.eurostat.ec.europa.eu, accessed 03/10/2009.

CESifo 🥵 DICE

(日) (四) (日) (日) (日)

(P. Pestieau)

э

Social protection systems can be classified according to:

- Generosity/redistribution
- Decommodification
- Activation
- Responsibility

э

・ロン ・四と ・ヨン ・ヨン

Taxonomy of social transfers

Means tested		Categorical		
		Flats benefits (universalistic, Beveridgean)	Earnings-related benefits (social insurance, Bismarckian)	
In cash	Welfare compensation		Unemployment compensation	
In nature	Food stamps	Health services	—	

11 / 73

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへ⊙

0.4. Poverty and inequality

Indicators of the progressivity of pension benefit formulae - Gini coefficient for pension

entitlements & progressivity index for OECD average

	Earnings distribution OECD average		
	Gini	Index	
Austria	215	20.7	The first column shows the result for t
Belgium	95	64.8	coefficient of gross pension benefits
2ech Republic	78	71.1	The second column shows the index of prod
lennark	23	91.7	of the base of the second
inland	25.3	6.7	or the cenerit formula.
rance	146	46.4	In the lat-rate cases - Ireland and New Ze
Sermany	20.9	22.9	the index is 100.
Greece	260	4.3	Other countries with highly progressive
luncary	25.6	5.6	systems are Australia, Canada, the Czech F
reland	00	100.0	Denmark and the United Kingdom where the
alv	26.1	4.0	shove two thirds. These countries have tan
uxembourg	25	17.2	basis consions that alay a major role in ref
letherlands	256	5.7	basic pensions that play a major role in let
oland	25.7	5.2	ricome provision.
Portugal	18.7	31.1	At the other end of the scale, Finland, Hunga
Sovak Republic	26.3	13.0	the Netherlands, Poland and the Slovak R
ipain	236		have almost entirely proportional systems w
weden	213	21.6	imited progressivity. The index is less than
Jnited Kingdom	83	69.6	these cases. This group includes two counts
			- notional accounts (Italy Poland) which
lorwary	148	45.3	deliberately designed to have a close link
Switzerland	152	44.1	contributions and kenefits Other count
unterlin	2.0	74.9	contributions and benefits. Other count
Nue narra Con orde	37	/ 4.0 86.5	between these two groups.
anos	14.2	47.0	
law Zealand	00	100.0	Source: DECD, Pensions at a Glance, Paris 2005 p.
Inited Ctates	16.1	40.6	

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

0.4. Poverty and inequality

Gini Coefficient of Inequality in the Distribution of Equivalised Household Disposable Income between mid-1980s and 2008

(a) Data for Germany in the mid-1980s refer to Western Germany only. - (b) Data for 2008 refer to 2000.

Source: OECD (2005), Society at a Glance, p. 55, and Eurostat, Online Database 2010, http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=itc_sic2&lang=de (accessed 18/02/2010).

CESifo 💮 DI

< ロト (同下 (ヨト (ヨト))

0.4. Poverty and inequality

< ロト (同) (三) (三)

Poverty Rates^{a)} among Older People and for the Total Population, 2000

(P. Pestieau)

14 / 73

イロト イヨト イヨト イヨト

	40% of median income 50% of median income			60% of median income	
	Average of poverty rates over the three years	Average of poverty rates over the three years	Poor only once	Persistent poor	Average of poverty rates over the three years
Austria	3.6	7.1	6.7	2.9	13.0
Belgium	3.0	6.7	7.2	2.6	13.7
Denmark	2.4	5.7	7.3	1.7	11.0
Finland	2.9	6.8	5.9	2.8	12.9
France	3.6	7.9	7.6	2.8	14.9
Germany	3.3	6.1	5.6	2.3	11.0
Greece	9.1	14.6	9.7	7.1	21.4
Ireland	6.9	15.0	7.9	8.1	22.2
Italy	7.9	12.6	8.3	5.6	19.6
Luxembourg	1.7	5.9	4.4	2.6	13.0
Netherlands	2.9	5.2	5.7	1.3	9.6
Portugal	7.6	13.5	8.4	7.1	20.4
Spain	7.3	13.9	11.1	5.5	20.9
United Kingdom	6.5	11.9	9.4	5.1	19.2
Australia	6.2	14.0	10.5	6.5	20.8
Canada	6.9	11.8	7.4	6.6	18.7
United States	8.7	13.9	8.6	7.2	20.9

Poverty persistence: duration of the poverty spell over three years

Note: Data refer to three years in the early 2000s. Relative income powerty is based on equivalised household disposable income. All measures are bases on the set of individuals present in each of the furee-year period. Source: OECD, Society at a Glance: OECD Social Indicators – 2006 Edition, Paris 2007, p. 61.

A. DESIGN AND SUSTAINABILITY

- A.1 Bismarck versus Beveridge
- A.2 Optimal design
- A.3 Political sustainability
- A.4 Notional accounts. Pros and cons

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Example of pensions. Individuals differ in productivity w_i .

Utility:

$$u(c_i) + \beta u(d_i) = u(w_i(1-\tau) - s_i) + \beta u((1+\tau)s_i + p_i)$$

where

$$p_i = \tau (1+r) [\alpha w_i + (1-\alpha)\overline{w}]$$

 $\alpha:$ Bismarckian parameter

- 《圖》 《圖》 《圖》

イロト イヨト イヨト イヨト

$$U_i = u (w_i(1-\tau) - s_i) + \beta u ((1+\tau)s_i + p_i + w_i z_i(1-\tau) - z_i^2/2)$$

where

$$p_i = \tau \left[\left(\overline{wz} + (1+r)w_i \right) (1-\alpha) + (w_i z_i + (1+r)w_i) \alpha \right]$$

$$u'(c_i) = \beta (1+r)u'(d_i)$$

$$z_i = w_i \left(1 - \tau (1-\alpha) \right)$$

(P. Pestieau)

≣ ୬९୯ 18 / 73

A.2. Optimal design

 $\max \sum \nu_i n_i U_i$

- where ν_i : social weight
 - n_i : proportion of type *i*'s individuals
- Key factors: liquidity constraints tax distortions individual characteristics

Solution: $\alpha \leq 0$ $1 > \tau > 0$

▲□▶ ▲□▶ ▲回▶ ▲回▶ ▲□ ● ○○○

A.3. Political sustainability

Two stage choice

- choice of α (normative or positive)
- choice of τ (majority voting)

Solution: $1 > \alpha > 0$ τ increases with α

Empirical text:

 τ : generosity

 $1 - \alpha$: redistributive index

Correlation $(\alpha, \tau) = 0.74$

Observation:

In most countries, 2/3 social spending concern lifetime redistribution

《曰》 《聞》 《臣》 《臣》

・ロン ・四と ・ヨン ・ヨン

Conjecture:

Regardless of how much benefit one gets from paid contributions, these are perceived as taxes.

See above: regardless of α , people supply

$$\ell = w(1-\tau)$$
 and not $w(1-\tau(1-\alpha))$

< ロト (同) (三) (三)

Approach:

Divide social protection in two parts:

- Notional accounts for lifetime redistribution
 - Health
 - Education
 - Pension
- Redistribution programs for redistribution across households

Assessment: open questions

- Empirical issue that has not been solved?
- First step towards privatization ?
- Political sustainability?

B. THE PERFORMANCE OF SOCIAL PROTECTION

- B.1 Performance approach
- B.2 Performance and efficiency

- B.3 Measuring and comparing
- B.4 Convergence

- How to measure the performance of the WS?
- Social spending ?

In the EU15, share in GDP 20,6 in 1980 23,4 in 1990 24 in 2001

A B A B A

- 4 同 6 - 4 三 6 - 4 三 6

Not a good measure:

- other means (minimum wage, labor protection),
- mandatory and subsidized private schemes

We are interested by the outcome and not the means.

Performance evaluation

Relative to the objective of the WS

- poverty alleviation
- lifetime risk protection

- Analogy: difference between grading students and weighting their grades according to their merits
 - The best student is not necessarily the most deserving
- Performance: measured according to the way the objective are fulfilled
- Efficiency: can one improve performance with available resources?

・ロッ ・ 日 ・ ・ 日 ・ ・ 日 ・

・ロト ・四ト ・ヨト ・ヨト

Efficiency measurement: clear link between resources and performance

OK for railways, postal services, hospitals, ...

Questionable for education and health

Even more questionable for large aggregates: welfare state, social protection

5 partial indicators: EU15, 1995-2008

- POV: poverty rate (60%)
- INE: interquintile ratios
- UNE: long term unemployment
- EDU: early school leavers
- EXP: life expectancy

Normalized from 0 to 1 (HDI) Other normalizations

- 4 同 6 - 4 三 6 - 4 三 6

Two ways to aggregate these partial indicators:

- unweighted sum (HDI)
 - sum of partial indicators (SPI)
- distance with respect to a best practice frontier

Best practice fontier:

- two types of methods
 - parametric
 - non parametric (DEA)

B.3. Measuring and comparing

(P. Pestieau)

B.3. Measuring and comparing

		SPI		DEA		
	Sco	ores ra	nk Sco	ores ran	k	
AU	UT 0.8	365	2 1.0	000 1		
BE	CL 0.5	568	9 0.9	918 10		
DF	U 0.4	195 1	0.9	928 9		
DN	IK 0.7	757	4 1.0	000 1		
ES	P 0.3	359 1	3 0.9	910 11		
FI	N 0.7	748	6 1.0	000 1		
FR	A 0.7	725	7 1.0	000 1		
GE	BR 0.4	139 1	2 0.7	774 14		
GF	RC 0.2	274 1	4 0.8	310 13		
IR	L 0.6	309	8 0.9	942 8		
IT	A 0.4	164 1	1 1.0	000 1		
LU	X 0.7	750	5 0.8	388 12		
NL	D 0.8	343	3 1.0	000 1		
PF	ат 0.0	93 1	5 0.5	248 15		
SW	/E 0.9	923	1 1.0)00 1		
Me	an 0.	594	0.8	395		

Performance scores and ranks, EU15 - 2008

(日) (四) (日) (日) (日)

DEA: with less indicators, less unitary scores

Correlation between SPI and DEA: 0.80

Other normalizations: same results

э

	SP	Ί	DE	DEA		DEA-I	
	Scores	rank	Scores	rank	Scores	rank	
AUT	0.885	2	1.000	1	0.770	20	
BEL	0.728	12	0.921	19	0.691	27	
BGR	0.392	25	0.737	27	0.788	17	
CYP	0.813	8	1.000	1	1.000	1	
CZE	0.852	6	1.000	1	1.000	1	
DEU	0.680	13	0.931	17	0.702	25	
DNK	0.857	5	1.000	1	0.712	23	
ESP	0.551	21	0.973	14	0.980	10	
EST	0.556	20	0.850	23	1.000	1	
FIN	0.834	7	0.978	13	0.801	16	
\mathbf{FRA}	0.788	10	1.000	1	0.739	21	
GBR	0.637	15	0.883	20	0.714	22	
GRC	0.549	22	0.866	21	0.708	24	
HUN	0.659	14	0.949	15	0.776	18	
IRL	0.750	11	0.927	18	1.000	1	
ITA	0.623	18	1.000	1	0.828	14	
LTU	0.505	23	1.000	1	1.000	1	
LUX	0.812	9	0.938	16	0.989	9	
LVA	0.303	27	0.807	24	1.000	1	
MLT	0.594	19	0.865	22	1.000	1	
NLD	0.869	3	1.000	1	0.823	15	
POL	0.633	16	1.000	1	0.949	12	
\mathbf{PRT}	0.425	24	0.778	25	0.696	26	
ROM	0.354	26	0.755	26	0.858	13	
SVK	0.632	17	1.000	1	1.000	1	
SVN	0.867	4	1.000	1	0.954	11	
SWE	0.906	1	1.000	1	0.771	19	
Mean	0.669		0.932		0.861		

Performance scores and ranks, EU27-2008

< 注→

- Hypothesis: economic integration and OMC lead to decreasing spending and redistribution and to convergence of performance
- How to measure? Spending or outcomes?
- Average indicator increases everywhere and converges

(4回) (4回) (4回)

B.4. Evolution and convergence

<ロ> (日) (日) (日) (日) (日)

Average indicator 1995-2008

B.4. Evolution and convergence

Convergence of SPI, EU15

▲ロト ▲圖ト ▲ヨト ▲ヨト 三目 - のへで

・ロト ・四ト ・ヨト

- Variation in DEA performance measures
- Decomposition:
 - shift of the best practice frontier
 - variation in the distance w.r.t. the best practice frontier
- Malmquist measure and decomposition

Convergence of DEA according to "technical efficiency" change

A B A A B A

< ロト (同) (三) (三)

- Performance (and efficiency when possible) evaluation is a **must**:
 - to check convergence and social dumping
 - to guide reforms
 - to foster yardstick competition (OMC)
- Possible disagreement on data and performance indicators
 - not a reason to discard them
- Room for improvement
- Final word: no sign of social dumping

C. SOCIAL PROTECTION AND PRIVATE INSURANCE

- C.1 Insurance market
- C.2 Social insurance and redistribution

- C.3 Annuity market and long term care
- C.4 Health insurance and moral hazard

C.1. Insurance market

Social insurance and redistribution			
Argument	Advantage of social versus private insurance		
Large risk	Nil when reinsurance is possible		
Intergenerational smoothing	High		
Moral hazard	Negative		
Adverse selection	Nil if insurance is made mandatory		
Administrative cost	Noticeable particularly in the field of health care		
Redistribution	High		
Financing	Negative because of tax competition		
Commitment	Negative		
Single provision	High in the field of health care		

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Social spending and private insurance as share of GDP, 2001

э

C.2. Social insurance and redistribution

Individuals are characterized by their productivity w_i , and their probability of incurring a monetary loss D, p_i . There are two types of insurance: private (actuarially fair) and social (redistributive). Given risk aversion and actuarially fair) and social (redistributive). Given risk aversion and actuarial fairness, there will be full insurance.

Disposable income in both states of nature is:

$$x_i = w_i \ell_i - T_i (\alpha \overline{p} + (1 - \alpha) p_i) D$$

where T_i can be either non linear or linear and α is the coverage rate.

・ロト ・四ト ・ヨト ・ヨト

Linear case: $T_i = t w_i \ell_i - a$ Problem of the social planner:

$$\mathfrak{L} = \sum n^i \left[\left[u(w_i \ell_i (1-t) + a - (\alpha \overline{p} + (1-\alpha) p_i) D - \nu(\ell_i) \right] - \mu(a - \sum t w_i \ell_i) \right]$$

where $\ell_i = \ell \left((1-t) w_i \right).$

$$\frac{\partial \mathfrak{L}}{\partial \alpha} = \sum n^i u'(x_i)(p_i - \overline{p}) > 0$$

if p_i and w_i are negatively correlated.

$$\frac{\partial \mathcal{L}}{\partial t} = -\sum n^{i} u'(x_{i}) w_{i} \ell_{i} + \mu \sum \left(w_{i} \ell_{i} + t w_{i} \frac{\partial \ell_{i}}{\partial t} \right)$$
$$= -\operatorname{cov}(u'(x_{i}), w_{i} \ell_{i}) + \mu t w_{i} \frac{\partial \ell_{i}}{\partial t} = 0$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

C.2. Social insurance and redistribution

Extensions

~		
1	v	
	ι	

(日) (四) (日) (日) (日)

Loading cost +

- Moral hazard –
- Adverse selection +

3

The "forgotten half" of retirement security is carefully planning the "payout phase".

・ロト ・四ト ・ヨト ・ヨト

Financial planning would be easy if we knew with certainty how long we each would live. But length of life is highly uncertain.

Uncertainty forces one to trade-off two risks:

- if consume too aggressively, you will "run out of resources" before you die
- if consume too frugally, you lower your standard of living

・ロト ・四ト ・ヨト ・ヨト

Life annuities as the solution

Individual trades a stock of wealth for a flow of income that lasts as long as individual lives.

An annuity can provide a higher level of sustainable income that can be achieved from a non-annuitized asset.

Is it magic?

No, "there is no free lunch".

Annuities pay a higher return when alive in exchange for giving up right to wealth upon death

(日) (四) (日) (日)

Advantages of annuities

- higher return while living
- guaranteed income as long as you will live.

Disadvantages of annuities

- cannot bequeath the money (no inheritances)
- if annuity market are poorly developed, and thus there are concerns about:
 - pricing
 - liquidity

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Economic theory of life annuities

Yaari (1965): under certain conditions, individuals should convert 100% of their wealth to annuities:

- no bequest motives
- actuarially fair annuities
- Von Neumann-Morgenstern expected utility
- exponential discounting
- utility of consumption is additively separable over time
- no uncertainty other than date of death

C.3. Annuity market

Illustration

$$u(c) + \pi \beta u(d).$$

We assume $\beta(1+r) = 1$ and define the rate of return on the annuity: $\rho = ((1+r)/\pi) - 1.$

$$\max \quad u(w-s) + \pi \beta u \left(s \frac{1+r}{\pi} \right)$$
$$\therefore u'(c) = u'(d).$$

If there is no annuity:

$$u'(c) = u'(d)\pi.$$

Take $u = \ln$, $\pi = 1/2$, r = 0. With annuity, c = d = (2/3)w. Without annuity, c = (2/3)w; d = (1/3)w.

(P. Pestieau)

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Davidoff, Brown and Diamond (2005) show that, with complete markets, sufficient conditions for optimality of full annuitization are:

- no bequest motives
- annuity return to survivors > conventional asset return.

If markets are complete, the optimality of full annuitization survives the extension of the problem to many time periods and many states.

With incomplete markets, result can fail:

- if there is a severe mismatch between the desired consumption path and the annuity income stream, full annuitization sub-optimal
- example: some forms of expenditure shocks (i.e., medical shocks early in life).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ○ ○ ○

The annuity puzzle

Economic theory says annuities are quite valuable and that retirees ought to hold most of their portfolio in this form. Empirical evidence is that most individuals do not voluntarily annuitize their resources.

Why?

- bequests
- high prices (adverse selection or administrative costs)
- families as substitutes
- high discount rates
- uninsured medical expenditure shocks

C.3. Annuity market

Long term care

Huge problem linked to:

- Aging (share of 80+)
- Evolving family solidarity (20% without family support)
- Market failure

Current situation:

- Most assistance comes from the family
- Few schemes of social insurance (Germany)
- Narrow markets: except in the US (6 mo) and France (3 mo)

Definition: loss of autonomy

- Inability to perform basic daily activities (bathing, dressing, eating, continence)
- Need for assistance (different illness, disability, handicap, ...)
- Katz scale

(P. Pestieau)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ○ ○ ○

< 回 > < 回 > < 回 >

Three major risks

- Escalating costs
- Adverse selection (risk of dependency, longevity)
- Moral hazard

Two types of contracts

- French, lump-sum reimbursement
- American, cost reimbursement

・ロッ ・ 日 ・ ・ 日 ・ ・ 日 ・

Long term care puzzle

- Excessive costs (loading factors and adverse selection)
- Social assistance acting as Good Samaritan
- Trust into family solidarity
- Unattractive rule of reimbursement (lump sum)
- Myopia or ignorance
- Denial of heavy dependence

C.4. Health insurance and moral hazard

Unobserved action

Undertaken before or after the health risk has materialised: ex post or ex ante moral hazard

Illustration

2 states of the world

- m with probability p and loss L
- b

1 - p

- e: monetary effort
- h(e): loss reduction
- r: coinsurrance
- π : actuarially fair premium
- y: initial income

Utility

$$U = p u[y - L + h(e) - e(1 - r) - \pi] + (1 - p)u[y - \pi]$$

(P. Pestieau)

31

・ロト ・四ト ・ヨト ・ヨト

Perfect observability: insurer chooses e, r and $\pi = p r e$

$$\frac{\partial U}{\partial r} = p u'(c_m)e(1-p) - (1-p)u'(c_b)pe = 0$$

$$\frac{\partial U}{\partial e} = p u'(c_m)[h'(e) - (1-r) - pr] - (1-p)u'(c_b)pr = 0$$

$$\therefore u'(c_m) = u'(c_b)$$

$$h'(e) = 1$$

$$r = 0$$

(P. Pestieau)

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Asymmetric information

Indirect control of e:

$$\begin{array}{rcl} 1 - r &=& h'(e) \\ e &=& e(r), e'(r) > 0 \end{array}$$

Insurer maximizes U with respect to r and π s.t. e = e(r) and $\pi = p r e(r)$.

$$\frac{\partial U}{\partial \pi} = -p u'(c_m) - (1-p)u'(c_b) + \mu = 0$$
$$\frac{\partial U}{\partial r} = p u'(c_m) - \mu p(e+r e'(r)) = 0$$

where μ is the Lagrange multiplier

$$r = \frac{e(1-p)[u'(c_m) - u'(c_b)]}{[p \, u'(c_m) + (1-p)u'(c_b)]e'(r)}$$

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

D. TAGGING, TRANSFERS IN KIND AND WORKFARE

- D.1 Optimal redistribution
- D.2 Transfer in kind

- D3 Tagging
- D.4 Workfare

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

D.1. Optimal redistribution

Ideally: lump-sum (non distortionary) redistribution Second-best: unavoidable distortion Optimal income tax: nonlinear/linear

- ∴ No need to use other instruments (tax on luxury goods; subsidy or necessity, health, education)
- Yes but: non separable utility function
 - heterogenity in more than one characteristic
 - tax evasion

Cash transfer dominates in kind transfer.

・ロッ ・ 日 ・ ・ 日 ・ ・ 日 ・

Superiority of a lump-sum cash tax over a distortionary tax or a transfer in kind

Take an individual with utility $u(c, \ell) = c - \ell^2/2$ where $c = w\ell$ and w = 10.

In the LF, he chooses $\ell = 10$ which implies c = 100 and $u(c, \ell) = 50$.

Suppose that the government wants to give him a flat benefit of 16 to be financed either with a lump sum tax 16 or a proportional tax τ such that $\tau w \ell = 16$.

With the lump sum tax:

$$u = 10\ell - 16 + 16 - \ell^2/2 = 50.$$

Nothing changes.

(P. Pestieau)

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

With the flat tax, $u = 10(1 - \tau)\ell + 16 - \ell^2/2$ where

$$\tau w \ell = \tau (1 - \tau) w^2 = 16$$

 $\tau (1 - \tau) = 0.16 \text{ or } \tau = 0.2$
 $u = 32 + 16 = 48$

Suppose now that the government wants to make a transfer in kind equal to 120 to be financed by a lump sum tax. To produce 120, our individual has to work not 10 but 12 hours. His utility is now

$$120 - 72 = 48$$

Transfer in kind

 $2 \ {\rm individuals}$

$$u_A = y_A$$

$$u_D = y_D - e^{1-z} = y_D - 1 \qquad z = 1$$

$$= y_D - 2.7 \qquad z = 0$$

$$y_A + y_D + z = 6$$

Objective: $u_A = u_D$

《曰》 《圖》 《臣》 《臣》

D.2. Transfer in kind

イロト イヨト イヨト イヨト

Perfect observation

$$u_A = u_D = 2$$
$$y_D = 3, z = 1$$
$$y_A = 2$$

Types are not observed and z is supplied freely

$$y_A = y_D = 5/2$$

 $u_A = 2.5$
 $u_B = 2.5 - 1 = 1.5$

Only cash transfers:

$$y_A = y_D = 3$$
$$u_A = 3$$
$$u_D = 1$$

(P. Pestieau)

66 / 73

2

D.2. Transfer in kind

(P. Pestieau)

D.3. Disability and tagging

Issues

Stigmatisation, taking-up, horizontal equity, political support, errors

Model of income taxation

Two types of activities:

- a harsh one demanding skill: 2
- an easy and unskilled one: 1

< 回 > < 回 > < 回 >

D.3. Disability and tagging

 $2 \mbox{ types } A \mbox{ and } D$

Only a fraction γ of D is tagged

$$u_A = \log c_A - \varepsilon, \ w_A = 10$$

 $u_D = \log c_D, w_D = 0, 10^{\varepsilon} = 1.5, \varepsilon = 0.176$

Problem of the central planner

$$\max \quad \log c_A - \varepsilon + \gamma \log c_T + (1 - \gamma) \log c_D$$
$$-\mu [c_A + \gamma c_T + (1 - \gamma)c_D - w_A]$$
$$+\lambda [\log c_A - \varepsilon - \log c_D]$$
$$\frac{1}{c_A} - \mu + \lambda c_A; \frac{\gamma}{c_T} - \gamma \mu = 0;$$
$$\frac{1 - \gamma}{c_D} - (1 - \gamma)\mu - \frac{\gamma}{c_D} = 0$$

3

D.3. Disability and tagging

• First-best

• No tag
$$(\gamma = 0)$$

 $\mu = 0.1$
 $\lambda = 0.2$
 $c_A = 6$, $u_A = u_D$
 $c_D = 4$

• Tag

$$c_A = \frac{1+\lambda}{\mu}, c_T = \frac{1}{\mu}, c_D = \frac{1-\gamma-\lambda}{(1-\gamma)\mu}$$

$$\mu = 0.2, \quad c_T = 5$$

$$\lambda = \frac{0.5(1-\gamma)}{2.5-\gamma} = 0.2 \text{ if } \gamma = 0$$

$$= 0 \text{ if } \gamma = 1$$

۲

(P. Pestieau)

$$w_A > w_D$$

 $u_i = y_i - \ell_i^2/2 = w_i \ell_i - \ell_i^2/2 = \frac{w_i^2}{2}$

Objectives of the government: make sure that everyone earns

$$z > w_D \ell_D = w_D^2$$

(P. Pestieau)

・ロト ・四ト ・ヨト ・ヨト

D.4. Workfare

(日) (四) (日) (日) (日)

- FB: Transfer $b_D = z w_D^2$ Cost of the scheme: γb_D
- SB with transfer

$$b_D = b_A = b = z - w_D^2$$

Cost of the scheme b_D

• SB with workfare c

Now
$$b = z - w_D(\ell_D - c) = z - w_D^2 + w_D c$$

3
D.4. Workfare

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Find c and b that induce A to work normally

$$\frac{w_A^2}{2} = w_A(\ell_A - c) - \frac{\ell_A^2}{2} + b = \frac{w_A^2}{2} - cw_A + b cw_A + z + cw_D - w_D^2 = 0$$

$$c^* = \frac{z - w_D^2}{w_A - w_D}$$

 $z - w_D^2 = c^*(w_A - w_D)$ is the cost of the transfer scheme. The cost of workfare is $\gamma[z - w_D^2 + w_D c^*] = \gamma w_A c^*$ Workfare dominates pure transfers if

$$(w_A - w_D)c^* > \gamma w_A c^*$$
$$(1 - \gamma)w_A > w_D$$